Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 467(7315): 612-6, 2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-20882017

RESUMO

In most bacteria and all archaea, glutamyl-tRNA synthetase (GluRS) glutamylates both tRNA(Glu) and tRNA(Gln), and then Glu-tRNA(Gln) is selectively converted to Gln-tRNA(Gln) by a tRNA-dependent amidotransferase. The mechanisms by which the two enzymes recognize their substrate tRNA(s), and how they cooperate with each other in Gln-tRNA(Gln) synthesis, remain to be determined. Here we report the formation of the 'glutamine transamidosome' from the bacterium Thermotoga maritima, consisting of tRNA(Gln), GluRS and the heterotrimeric amidotransferase GatCAB, and its crystal structure at 3.35 A resolution. The anticodon-binding body of GluRS recognizes the common features of tRNA(Gln) and tRNA(Glu), whereas the tail body of GatCAB recognizes the outer corner of the L-shaped tRNA(Gln) in a tRNA(Gln)-specific manner. GluRS is in the productive form, as its catalytic body binds to the amino-acid-acceptor arm of tRNA(Gln). In contrast, GatCAB is in the non-productive form: the catalytic body of GatCAB contacts that of GluRS and is located near the acceptor stem of tRNA(Gln), in an appropriate site to wait for the completion of Glu-tRNA(Gln) formation by GluRS. We identified the hinges between the catalytic and anticodon-binding bodies of GluRS and between the catalytic and tail bodies of GatCAB, which allow both GluRS and GatCAB to adopt the productive and non-productive forms. The catalytic bodies of the two enzymes compete for the acceptor arm of tRNA(Gln) and therefore cannot assume their productive forms simultaneously. The transition from the present glutamylation state, with the productive GluRS and the non-productive GatCAB, to the putative amidation state, with the non-productive GluRS and the productive GatCAB, requires an intermediate state with the two enzymes in their non-productive forms, for steric reasons. The proposed mechanism explains how the transamidosome efficiently performs the two consecutive steps of Gln-tRNA(Gln) formation, with a low risk of releasing the unstable intermediate Glu-tRNA(Gln).


Assuntos
Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/metabolismo , Transferases de Grupos Nitrogenados/química , Transferases de Grupos Nitrogenados/metabolismo , RNA de Transferência de Glutamina/química , RNA de Transferência de Glutamina/metabolismo , Thermotoga maritima/enzimologia , Anticódon/genética , Biocatálise , Cristalografia por Raios X , Ensaio de Desvio de Mobilidade Eletroforética , Modelos Moleculares , Conformação Molecular , Ligação Proteica , RNA de Transferência de Glutamina/biossíntese , RNA de Transferência de Ácido Glutâmico/química , RNA de Transferência de Ácido Glutâmico/metabolismo , Staphylococcus aureus/enzimologia , Especificidade por Substrato
2.
Mol Biol (Mosk) ; 44(2): 301-10, 2010.
Artigo em Russo | MEDLINE | ID: mdl-20586191

RESUMO

The variety of mechanisms providing viability of organisms bearing nonsense-mutations in the essential genes is unknown at present. In yeast Saccharomyces cerevisiae nonsense-mutants containing premature stop-codon in mRNA of the essential SUP45 gene were obtained. These strains are viable in the absence of mutant suppressor tRNA, therefore it is supposed that there are alternative mechanisms providing nonsense-suppression and mutants viability. Analysis of transformants obtained by transformation of strain bearing nonsense-mutant allele of SUP45 gene with multicopy yeast genomic library revealed three genes encoding wild type tRNA(Tyr) and four genes encoding wild type tRNA(Gln) that improve nonsense-mutants viability. Moreover, overexpression of these genes leads to the increase in the amount of full-length eRF1 protein in cell and compensates nonsense-mutants sensitivity to high temperature. Probable mechanisms of tRNA(Tyr) and tRNA(Gln) influence on the increase of viability of nonsense-mutants in SUP45 gene are discussed in this work.


Assuntos
Códon sem Sentido , Regulação Fúngica da Expressão Gênica/fisiologia , Fatores de Terminação de Peptídeos/metabolismo , RNA Fúngico/biossíntese , RNA de Transferência de Glutamina/biossíntese , RNA de Transferência de Tirosina/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Terminação de Peptídeos/genética , RNA Fúngico/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência de Glutamina/genética , RNA de Transferência de Tirosina/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Proc Natl Acad Sci U S A ; 106(38): 16209-14, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19805282

RESUMO

Mammalian mitochondrial (mt) tRNAs, which are required for mitochondrial protein synthesis, are all encoded in the mitochondrial genome, while mt aminoacyl-tRNA synthetases (aaRSs) are encoded in the nuclear genome. However, no mitochondrial homolog of glutaminyl-tRNA synthetase (GlnRS) has been identified in mammalian genomes, implying that Gln-tRNA(Gln) is synthesized via an indirect pathway in the mammalian mitochondria. We demonstrate here that human mt glutamyl-tRNA synthetase (mtGluRS) efficiently misaminoacylates mt tRNA(Gln) to form Glu-tRNA(Gln). In addition, we have identified a human homolog of the Glu-tRNA(Gln) amidotransferase, the hGatCAB heterotrimer. When any of the hGatCAB subunits were inactivated by siRNA-mediated knock down in human cells, the Glu-charged form of tRNA(Gln) accumulated and defects in respiration could be observed. We successfully reconstituted in vitro Gln-tRNA(Gln) formation catalyzed by the recombinant mtGluRS and hGatCAB. The misaminoacylated form of tRNA(Gln) has a weak binding affinity to the mt elongation factor Tu (mtEF-Tu), indicating that the misaminoacylated form of tRNA(Gln) is rejected from the translational apparatus to maintain the accuracy of mitochondrial protein synthesis.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Mitocôndrias/metabolismo , Aminoacil-RNA de Transferência/biossíntese , RNA de Transferência de Glutamina/biossíntese , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/genética , Animais , Northern Blotting , Bovinos , Glutamato-tRNA Ligase/genética , Glutamato-tRNA Ligase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Cinética , Microscopia de Fluorescência , Dados de Sequência Molecular , Transferases de Grupos Nitrogenados/genética , Transferases de Grupos Nitrogenados/metabolismo , Conformação de Ácido Nucleico , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Interferência de RNA , Aminoacil-RNA de Transferência/química , RNA de Transferência de Glutamina/química , RNA de Transferência de Ácido Glutâmico/biossíntese , RNA de Transferência de Ácido Glutâmico/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Transfecção , Aminoacilação de RNA de Transferência
4.
Mol Biosyst ; 3(6): 408-18, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17533454

RESUMO

In nature, ribosomally synthesized proteins can contain at least 22 different amino acids: the 20 common amino acids as well as selenocysteine and pyrrolysine. Each of these amino acids is inserted into proteins codon-specifically via an aminoacyl-transfer RNA (aa-tRNA). In most cases, these aa-tRNAs are biosynthesized directly by a set of highly specific and accurate aminoacyl-tRNA synthetases (aaRSs). However, in some cases aaRSs with relaxed or novel substrate specificities cooperate with other enzymes to generate specific canonical and non-canonical aminoacyl-tRNAs.


Assuntos
Aminoacilação de RNA de Transferência , Aminoacil-tRNA Sintetases/metabolismo , Aspartato-tRNA Ligase/metabolismo , Bactérias/enzimologia , Aminoacil-RNA de Transferência/biossíntese , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/metabolismo , RNA de Transferência de Asparagina/biossíntese , RNA de Transferência de Asparagina/química , RNA de Transferência de Cisteína/biossíntese , RNA de Transferência de Cisteína/química , RNA de Transferência de Glutamina/biossíntese , RNA de Transferência de Glutamina/química
5.
J Biol Chem ; 276(49): 45862-7, 2001 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-11585842

RESUMO

Aminoacyl-tRNA is generally formed by aminoacyl-tRNA synthetases, a family of 20 enzymes essential for accurate protein synthesis. However, most bacteria generate one of the two amide aminoacyl-tRNAs, Asn-tRNA or Gln-tRNA, by transamidation of mischarged Asp-tRNA(Asn) or Glu-tRNA(Gln) catalyzed by a heterotrimeric amidotransferase (encoded by the gatA, gatB, and gatC genes). The Chlamydia trachomatis genome sequence reveals genes for 18 synthetases, whereas those for asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase are absent. Yet the genome harbors three gat genes in an operon-like arrangement (gatCAB). We reasoned that Chlamydia uses the gatCAB-encoded amidotransferase to generate both Asn-tRNA and Gln-tRNA. C. trachomatis aspartyl-tRNA synthetase and glutamyl-tRNA synthetase were shown to be non-discriminating synthetases that form the misacylated tRNA(Asn) and tRNA(Gln) species. A preparation of pure heterotrimeric recombinant C. trachomatis amidotransferase converted Asp-tRNA(Asn) and Glu-tRNA(Gln) into Asn-tRNA and Gln-tRNA, respectively. The enzyme used glutamine, asparagine, or ammonia as amide donors in the presence of either ATP or GTP. These results suggest that C. trachomatis employs the dual specificity gatCAB-encoded amidotransferase and 18 aminoacyl-tRNA synthetases to create the complete set of 20 aminoacyl-tRNAs.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Chlamydia trachomatis/genética , RNA Bacteriano/biossíntese , RNA de Transferência de Asparagina/biossíntese , RNA de Transferência de Glutamina/biossíntese , Aminoacil-tRNA Sintetases/isolamento & purificação , Chlamydia trachomatis/enzimologia , Eletroforese em Gel de Poliacrilamida , Genes Bacterianos
6.
Mol Cell Biol ; 15(12): 6593-600, 1995 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8524224

RESUMO

The effect of the 3' codon context on the efficiency of nonsense suppression in mammalian tissue culture cells has been tested. Measurements were made following the transfection of cells with a pRSVgal reporter vector that contained the classical Escherichia coli lacZ UAG allele YA559. The position of this mutation was mapped by virtue of its fortuitous creation of a CTAG MaeI restriction enzyme site. Determination of the local DNA sequence revealed a C-->T mutation at codon 600 of the lacZ gene: CAG-->TAG. Site-directed mutagenesis was used to create a series of vectors in which the base 3' to the nonsense codon was either A, C, G, or U. Suppression of the amber-containing reporter was achieved by cotransfection with genes for human tRNA(Ser) or tRNA(Gln) UAG nonsense suppressors and by growth in the translational error-promoting aminoglycoside drug G418. Nonsense suppression was studied in the human cell lines 293 and MRC5V1 and the simian line COS-7. Overall, the rank order for the effect of changes to the base 3' to UAG was C < G = U < A. This study confirms and extends earlier findings that in mammalian cells 3' C supports efficient nonsense suppression while 3' A is unsympathetic for read-through at nonsense codons. The rules for the mammalian codon context effect on nonsense suppression are therefore demonstrably different from those in E. coli.


Assuntos
Códon/genética , Mutação Puntual , Supressão Genética , beta-Galactosidase/biossíntese , Animais , Sequência de Bases , Linhagem Celular , Chlorocebus aethiops , Citosina , Primers do DNA , Escherichia coli/enzimologia , Escherichia coli/genética , Genes Bacterianos , Glutamina , Humanos , Cinética , Mamíferos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Sondas de Oligonucleotídeos , RNA de Transferência de Glutamina/biossíntese , RNA de Transferência de Glutamina/genética , RNA de Transferência de Serina/biossíntese , RNA de Transferência de Serina/genética , Mapeamento por Restrição , Serina , Timina , Transfecção , beta-Galactosidase/genética
7.
Virology ; 165(2): 518-26, 1988 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-2457280

RESUMO

Avarol is a sesquiterpenoid hydroquinone, which displays no inhibitory potencies on mammalian DNA polymerases alpha, beta, and gamma, on mammalian RNA polymerases I, II, and III, or on reverse transcriptases from Moloney murine leukemia virus (Mo-MuLV) and from HIV. For a further elucidation of the antiviral effect of Avarol, we used NIH-3T3 cells infected with Mo-MuLV as a model system. The results show that in uninfected NIH-3T3 cells Avarol (i) causes a 50% reduction of the growth rate only at the high concentration of 29.6 microM and (ii) is accumulated in the cytoplasm close to the nucleus. At the much lower concentrations of 1-3 microM, Avarol causes an almost complete inhibition of viral progeny release. Moreover, it is shown that at 3 microM Avarol, the increase of the Mo-MuLV-induced UAG suppressor glutamine tRNA (tRNA(UmUGGln) was reduced to the normal level. Dot blot hybridization studies revealed that Avarol displays no inhibitory activity on cellular and viral mRNA synthesis. Taking the processing pathway of viral polyprotein Pr180gag,pol to p80 (reverse transcriptase) as an example, our Western blotting experiments showed that the final maturation process, conversion of p110 to p80, is inhibited in Avarol-treated cells. From these data we conclude that Avarol prevents the suppression of the UAG termination codon at the gag-pol junction of the retroviral genome. The functional consequence of this event is very likely an inhibition of the readthrough of the retroviral protease gene which overlaps the pol and gag genes, resulting in the reduction of the protease synthesis which is necessary for the viral proliferation.


Assuntos
Leucemia Experimental/genética , RNA de Transferência Aminoácido-Específico/biossíntese , RNA de Transferência de Glutamina/biossíntese , Sesquiterpenos/farmacologia , Supressão Genética , Animais , Linhagem Celular , DNA Polimerase Dirigida por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Vírus da Leucemia Murina de Moloney , Peptídeo Hidrolases/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , RNA Mensageiro/biossíntese , RNA Viral/biossíntese , DNA Polimerase Dirigida por RNA/biossíntese
8.
J Mol Biol ; 202(1): 121-6, 1988 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-2459391

RESUMO

We describe the genetically engineered overproduction of Escherichia coli tRNA(2Gln), its purification by high pressure liquid chromatography (HPLC), and its subsequent use in the growth of crystals of the E. coli glutaminyl-tRNA synthetase-tRNA(Gln) complex. The overproduced tRNA represents 60 to 70% of the total tRNA extracted from the engineered strain. A single anion exchange HPLC column is then sufficient to increase the purity of this isoacceptor to 90 to 95%. Crystals of this material complexed with the monomeric E. coli glutaminyl-tRNA synthetase enzyme were obtained by vapor diffusion from solutions containing sodium citrate as the precipitating agent. The crystals diffract to beyond 2.8 A resolution (1 A = 0.1 nm) and are of the orthorhombic space group C222(1) with unit cell parameters a = 240.5 A, b = 93.9 A, c = 115.7 A. Gel electrophoresis of dissolved crystals demonstrates the presence of both protein and tRNA.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Escherichia coli/metabolismo , RNA Bacteriano/biossíntese , RNA de Transferência Aminoácido-Específico/biossíntese , RNA de Transferência de Glutamina/biossíntese , Cromatografia Líquida de Alta Pressão , Cristalização , Eletroforese em Gel de Poliacrilamida , RNA Bacteriano/isolamento & purificação , RNA de Transferência de Glutamina/isolamento & purificação , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...